

Het potentieel van 3D-print technieken voor de textielindustrie

Sofie Huysman

About Centexbel

- Collective research and technical centre in Belgium
- In service of the textile and plastic converting industry
- Driven by the industry demand
- 180 employees 3 sites

Research Groups

Introduction to 3D-printing

Polymers are the leading materials in the 3D-printing industry

To link 3D-printing & textile applications, polymers are the most obvious choice

Polymer-based techniques

Photopolymerisation

Principle

A liquid photopolymer in a vat is selectively cured by light-activated polymerization

Materials

- Binders + monomers + photoinitiators
- Usually epoxy-based resin systems

Examples of techniques:

- Stereolithography (SLA) \rightarrow UV-curing through a laser beam
- Digital light processing (DLP) \rightarrow UV-curing through a project screen
- Polyjet technique: special case, allows multimaterial building

Powder fusion

Principle

Regions of a polymer powder bed are fused through a laser beam (SLS) or liquid bonding agent (Binder Jetting)

Materials

- PC: amorphous, gives dimensional accuracy but can only partially consolidate → for applications that do not require strength and durability
- PA: semi-crystalline, can be sintered to dense parts with good mechanical properties.

Material extrusion - basics

Principle

FFF = Fused Filament Fabrication

A thermoplastic filament is pushed through a heated extruder head using a drive wheel, to create objects layer by layer.

Materials

- The material should be extrudable into filaments, not be too flexible to avoid buckling between the drive wheels, and flexible enough to be spooled.
- Common filaments: ABS, PLA, PA, TPU, PET, ...
- Combination with fillers is possible

Material extrusion – new trend

Directly from pellets \rightarrow much wider range of polymers possible!

Example 2: Pollen AM

Example 3: CEAD printer for large applications (up to 4 x 2 x 1.5 m)

Summary

	Photo polymerisation	Powder fusion	Extrusion from filament	Extrusion from pellets	
Accuracy	high	high	low	low	
Machinery cost	high	high	low	high	
Open source	no	no	yes	semi	
Material cost	high	high	medium	low	
Material freedom	low	low	high	very high	
	Absence of UV light or liquid resins: Most suitable in combination with textile				

3D-printing vs. textile

First thing that comes to mind: 3D-printing of entire garments

 \rightarrow Very time-consuming and complex, only in 'haute couture'

Top: by Danit Peleg – FFF technology Right: by Iris van Herpen – Objet technology

3D-printing vs. textile

Another trend is mass-customization by 3D-printing directly on textile

C E N T E X B E L

"Fabrication of functional & custom-fit textiles using 3D printing based on scanning technology"

Hochschule Niederrhein University of Applied Sciences

Forschungsinstitut für Textil und Bekleidung Research Institute for Textile and Clothing

Suitable flexible polymers to 3D-print on textile?

SHORE HARDNESS SCALES

Filament production on monofilament extrusion line at Centexbel

Diameter & roundness control (1.75 or 2.85 mm)

Next step: 3D-printing on fabrics and evaluation of the adhesion

Main observations:

- Adhesion of TPU is better than TPS
- Adhesion can increase by pressing the nozzle deeper into the fabric
- A more open (less dense) woven or knitted structure is favorable
- Samples with good adhesion survived 50 industrial washing cycli at 60°

SEM images of TPU printed on 20% PES - 80% CO fabric

TPU

Scanning technology for customization -> back protector demonstrator

- 1. Scanning of the back with an Eva 3D handscanner.
- 2. Importing of the data in the software (Freeform Plus)
- 3. Construction of a 2D shape of the back protector
- 4. 3D extrusion of this shape to fit with the scanned back

Hochschule Nieden

Hochschule Niederrhein University of Applied Sciences

Cleanroom mask

Upscaling possibilities with the Blackbelt 3D-printer

Decorative 3D patterns

"Realization of smart textile applications with high customer acceptance by use of 3D printing technologies"

Hochschule Niederrhein University of Applied Sciences

Forschungsinstitut für Textil und Bekleidung Research Institute for Textile and Clothing

Conductive materials for 3D printing

Encapulsation via 3D printing

Encapsulation via lowpressure molding

C E N T E X B E L

Lab-scale trials: Mix TPU with additive

Measure the resistivity Ohm.cm = R*A/L

Balancing between:

- Processability
- Technical performance
- Economic cost (price)
- Environmental impact

CNT's	100 €/kg		
Carbon Black	10 €/kg		
Graphene	TBD		
Bekishield	65 €/kg		

→ MB 10% CNT (arc)

	Technical performance	Economic cost (price)	Environmental Impact	Processability
CNT's	high	high	high	ok via MB
Carbon black (CB)	low	low	low	ok via MB
Graphene			low	
Bekishield	medium	medium	low	difficult, ongoing
CNT + CB	increased ↑	reduced↓	reduced ↓	ok, via MB
Bekishield + CB	increased ↑	reduced ↓	low	difficult, ongoing

Synergies to achieve improvement in different areas

"Realization of smart textile applications with high customer acceptance by use of 3D printing technologies"

Hochschule Niederrhein University of Applied Sciences

Forschungsinstitut für Textil und Bekleidung Research Institute for Textile and Clothing

Conductive materials for 3D printing

Encapulsation via 3D printing

Encapsulation via lowpressure molding

Low pressure injection molding with 3D-printed molds

Customised 3D-printed molds (e.g. from ABS): cheap and recyclable

Example of an application: Protection of cable connections in smart textiles

Which materials for low pressure molding?

Material on picture: co-polyamid (Thermelt 817)

- Applicable at 180-200 °C
- High T is not suitable for batteries
- Quite stiff material

First tests with 2K polyurethanes ongoing

- Applicable at room T but long curing time (1 night)
- Much faster at 70° but catalysts needed
- Viscosity is not on point yet

Work in rogress

"Realization of smart textile applications with high customer acceptance by use of 3D printing technologies"

Hochschule Niederrhein University of Applied Sciences

Forschungsinstitut für Textil und Bekleidung Research Institute for Textile and Clothing

Conductive materials for 3D printing

Encapulsation via 3D printing

Encapsulation via lowpressure molding

Jump to Repair3D project, with similar task

"Recycling and repurposing of plastic waste for advanced 3D-printing applications"

Polymer + fibres = COMPOSITE

Encapulsation via 3D printing

Printed Ciruit Board (PCB)

Encapulsation via 3D printing

Contact

Sofie Huysman <u>shu@centexbel.be</u>

Tom Vercoutere <u>tov@vkc.be</u>

Project websites: https://smart3dproject.eu/ https://www.repair3d.net/

